
Midterm - 16/04/2025

Given Equations

Semiconductors at thermal equilibrium (Boltzmann and
Fermi-Dirac formulas)

n0 = Nc · e−
EC−Ef

kT

p0 = Nv · e−
Ef−EV

kT

n0 = Nc · 1

1+e
EC−Ef

kT

p0 = Nv · 1

1+e
Ef−EV

kT

n2
i = n · p

n2
i = NcNve

−Eg
kT

Carrier transport
σ = q · (µnn+ µpp)
Ln =

√
Dnτn

Lp =
√

Dpτp

PN junction

ϕb =
kT
q
ln

(
NaNd

n2
i

)
ϕn = kT

q
ln

(
Nd

ni

)
ϕp = −kT

q
ln

(
Na

ni

)
xd(V ) =

√
2ϵSi(Na+Nd)

qNaNd
(ϕb − V )

MOS transistor
VFB = ϕms − qQss

Cox

Vth = VFB − 2ϕp + γ
√
−2ϕp

γ =
√
2ϵSiqNa

Cox

ID = W
L
µnCox

(
VGS − VDS

2
− Vth

)
VDS
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Given Constants

k = 8.62 · 10−5 [eV/K] = 1.38 · 10−23 [J/K]
q = 1.60 · 10−19 [C]
ϵ0 = 8.85 · 10−14 [F/cm]
ϕm(Al) = 3.2 [V ]

Si properties

ni = 1.5 · 1010 [cm−3] @ T = 300 [K]
Eg = 1.12 [eV ] @ T = 300 [K]
Nv = 1.04 · 1019 [cm−3] @ T = 300 [K]
Nc = 2.8 · 1019 [cm−3] @ T = 300 [K]
χSi = 3.25 eV
ϵSi = 11.7 · ϵ0
ϵSiO2 = 3.9 · ϵ0

GaN properties

Eg = 3.39 [eV ] @ T = 300 [K]
Nv = 4.6 · 1019 [cm−3] @ T = 300 [K]
Nc = 2.3 · 1018 [cm−3] @ T = 300 [K]
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Exercise 01

Consider a sample of gallium nitride (GaN) in a wurtzite crystal structure. The
valence and conduction bands effective density of states follow a T 3/2 thermal
dependency law. At 0 [K], the band gap energy is Eg(0) = 3.47 [eV ]. Assume
that the energy gap depends on the temperature by this law:

Eg = Eg(0)− 7.7 · 10−4 · T 2

T + 600
(1)

• Calculate the intrinsic carrier concentration at 300 [K].

• Calculate the intrinsic carrier concentration at 600 [◦C]: is this higher or
lower than the room temperature value in silicon?

• Propose one application for this material, where silicon is inappropriate.

Exercise 02

Consider a sample of silicon (Si) at 300 [K], doped with a concentration of boron
(B) such that the Fermi level is 10 [meV ] higher than the dopant level. Consider
a dopant ionization energy of 45 [meV ].

• Draw a band diagram of this sample of silicon, highlighting the zero-energy
reference.

• Calculate the charge carrier concentration using both the Boltzmann ap-
proximation and the Fermi-Dirac distribution, and calculate the percent-
age error of the Boltzmann approximation over the full formula.

• Comment on the result: what is the condition that is not satisfied in this
case for the use of the Boltzmann approximation?

Exercise 03

Consider a piece of lightly p-doped Si of length 1 [cm] and section 1
[
mm2

]
at

300 [K]. Upon application of 4 [V ] across the two extremities via ohmic contacts,
a current of approximately 1 [mA] is measured. Neglect any contact resistance.

• Based on the plot provided in figure 1, estimate the doping concentration.

• You want to modify the doping of this sample, in order to obtain a current
one order of magnitude higher, either by increasing the B concentration, or
by introducing some phosphorus (P). Which is more convenient to design?
Give the required dopant concentration in the two cases.
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Exercise 04

Consider an abrupt Si PN junction at T = 300 [K] with doping concentrations
Na = 8 · 1015

[
cm−3

]
and Nd = 3 · 1016

[
cm−3

]
.

• Calculate the widths of the depleted regions in the p-side and n-side for the
following cases: 1) thermal equilibrium; 2) VD = 0.5 [V ] (forward bias); 3)
VD = −1 [V ] (reverse bias).

• Calculate and draw the space charge density ρ(x) for the three cases.

• Calculate and draw the electric field E(x) for the three cases. Indicate
each time the value of Emax in [V/cm].

Exercise 05

Consider the same junction as the previous exercise. The junction parameters
are: Wn = Wp = 150 [um], τn0 = τp0 = 1 · 10−7 [s], Dn = 27

[
cm2/s

]
, Dp =

11
[
cm2/s

]
, A = 1

[
mm2

]
.

• Check whether the device has short neutral sides or long neutral sides com-
pared to the minority carriers diffusion lengths. Write the corresponding
formula for the reverse saturation current IS .

• Calculate IS at the two temperatures T1 = 300 [K] and T2 = 250 [K].
The valence and conduction bands effective density of states follow a
thermal dependency Nv ∝ T 3/2, Nc ∝ T 3/2. Consider Eg(250 [K]) ≈
Eg(300 [K]) = 1.12 [eV ].

• Calculate I(0.5 [V ]) at T1 and T2.

• Draw in a single plot the log|I(V )| curves at T1 and T2 and give a brief
comparison of them.

Exercise 06

Consider a Si PN diode at T = 300 [K] with parameters: Na = Nd = 1015
[
cm−3

]
,

IS = 2 · 10−13 [A], A = 0.1
[
mm2

]
, τT = 2 · 10−6 [s] (weighted average transit

time).

• Draw the small-signal equivalent circuit of the diode.

• Calculate the small-signal admittance gd, the depletion capacitance Cj

and the diffusion capacitance Cd at the DC working points VD = 0.3 [V ]
and VD = −2 [V ].

• In which of the two operating points is best to bias the diode to realize a
variable capacitor? Why?
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Exercise 07

Consider an NPN BJT with parameters: NdE = 1017
[
cm−3

]
, NaB = 1016

[
cm−3

]
,

Dn = 27
[
cm2/s

]
, Dp = 9

[
cm2/s

]
, µnE = 900

[
cm2V −1s−1

]
, AE = 100

[
um2

]
.

• Design the emitter width WE to have an emitter resistance RE = 5 [Ω].

• The minimum base width achievable with this technology isWB = 300 [nm].
Calculate the current gain βF . Assume that WB << LnB and WE <<
LpE and that we can neglect the width of the depletion region of the B-E
junction.

• The BJT has τn0 = τp0 = 5 · 10−7 [s]. Are the short base and emitter
assumptions verified?

Exercise 08

Consider a planar MOSFET structure with a 10× 10
[
µm2

]
aluminum gate on

a p-doped Si substrate with Na = 1015
[
cm−3

]
at 300 [K]. Let us first focus

on the gate stack. Upon acquiring a capacitance-voltage (C-V) curve at high
frequency, the capacitance of the MOS capacitor in accumulation is measured
to be 5.0 · 10−13 [F ], and drops to 1.2 · 10−14 [F ] in inversion.

• Calculate the thickness of SiO2 and of the depletion region.

• The C-V plot also shows a flat-band voltage VFB = −2.0 [V ]: calculate
the interfacial charge density.

• Based on the data obtained in the previous questions, calculate the thresh-
old voltage VT of this transistor.

• Assume you are operating the transistor in linear regime, at VGS = Vth +
0.10 [V ] and VDS = 10 [mV ]. Assume an electron mobility of 1.3·103

[
cm2 · V −1 · s−1

]
.

Calculate the current ID.

5



Figure 1: Electron and hole mobilities versus impurity concentrations for ger-
manium, silicon, and gallium arsenide at T = 300 [K].
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Solutions

Exercise 01

• Using Boltzmann approximation and the values given in the preamble:

n2
i = 4.6 · 1019 · 2.3 · 1018 · e−

3.39

8.62·10−5·300 = 1.2 · 10−19
[
cm−6

]
(2)

ni =
√
1.2 · 10−19 = 3.5 · 10−10

[
cm−3

]
(3)

• Starting by converting Celsius to Kelvin (600 [◦C] + 273 = 873 K) and
using the given equation for the bandgap:

Eg = 3.47− 7.7 · 10−4 · 8732

873 + 600
= 3.07 [eV ] (4)

We then use the same equation of the previous point, modifying temper-
ature and band gap in the exponential and accounting for the change in
effective density of states by multiplying by the temperature ratio with
the correct exponential:

n2
i = 4.6 · 1019 · 2.3 · 1018 ·

(
873

300

)3

· e−
3.07

8.62·10−5·873 = 5.0 · 1021
[
cm−6

]
(5)

ni =
√
5.0 · 1021 = 7.1 · 1010

[
cm−3

]
(6)

The intrinsic carrier density of GaN at 600 ◦C is higher (but in the same
order of magnitude) than the one of Si at room temperature.

• For example, high temperature or high power electronics.

Exercise 02

• See figure 2.

• From the Boltzmann approximation:

p0 = 1.04 · 1019 · e−
(10+45)·10−3

8.62·10−5·300 = 1.24 · 1018
[
cm−3

]
(7)

From the Fermi-Dirac formula:

p0 = 1.04 · 1019 · 1

1 + e
(10+45)·10−3

8.62·10−5·300

= 1.11 · 1018
[
cm−3

]
(8)

And finally:

Boltzmann− FD

FD
=

1.24− 1.11

1.11
= 0.117 (9)

errorBoltzmann = +11.7% (10)

• 55 meV < 3kBT with T = 300 [K].
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Figure 2: Band diagram.

Exercise 03

•
R =

V

I
=

4

1 · 10−3
= 4 · 103 [Ω] (11)
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ρ = R · A
L

= 4 · 103 · 1 · 10
−2

1
= 40 [Ω · cm] (12)

σ =
1

ρ
= 2.5 · 10−2

[
S · cm−1

]
(13)

σ = q · µp · p ⇒ 2.5 · 10−2 = 1.6 · 10−19 · µp · p (14)

By looking at figure 1, we observe that for low doping levels the hole
mobility is approximately constant and equal to 4.3·102

[
cm2 · V −1 · s−1

]
.

Assuming that p = [N+
a ] = [Na]:

p =
2.5 · 10−2

1.6 · 10−19 · 4.3 · 102
= 3.6 · 1014

[
cm−3

]
(15)

• We can observe that the hole mobility has approximately the same value
up to [Na] = 1016

[
cm−3

]
. Since I ∝ σ ∝ p = [Na] (at T = 300 [K]), we

can easily increase the current by one order of magnitude by increasing
the doping concentration [Na] to 3.6 · 1015

[
cm−3

]
.

The alternative is to obtain a compensated semiconductor by introducing
an n-doping with P so that the condition is satisfied. In order to find
[Nd], we proceed iteratively using the formula σ = q · µn · n, assuming
that in this case the conduction is completely dominated by electrons and
remembering that n ≈ [Nd] − [Na], where [Na] = 3.6 · 1014

[
cm−3

]
and

σ = 2.5 · 10−1
[
S · cm−1

]
.

2.5 · 10−1 = 1.6 · 10−19 · µn ·
(
[Nd]− 3.6 · 1014

)
(16)

1.6 · 1018 = µn ·
(
[Nd]− 3.6 · 1014

)
(17)

The equation is satisfied for [Nd] ≈ 1.25 · 1015
[
cm−3

]
, which correspond

to µn ≈ 1.8 · 103
[
cm2 · V −1 · s−1

]
.

Exercise 04

ϕb =
kT

q
ln

(
NaNd

n2
i

)
= 0.717 [V ] (18)

xn (VD) =

√
2ϵSi Na

q (Na +Nd) Nd
(ϕb − VD) (19)

xp (VD) =

√
2ϵSi Nd

q (Na +Nd) Na
(ϕb − VD) (20)

Beware that the results in your calculator are in [cm], not in [m]!
At thermal equilibrium: xn0 ≈ 81 [nm] and xp0 ≈ 303 [nm].

At VD = 0.5 V : xn ≈ 45 [nm] and xp ≈ 167 [nm] (γ =
√

1− VD

ϕb
≈ 0.55).
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At VD = −1 V : xn ≈ 126 [nm] and xp ≈ 470 [nm] (γ =
√
1− VD

ϕb
≈ 1.55).

The space charge density ρ(x) is:

ρ (x) =


0 , x ∈ ]←;−xp]

−qNa , x ∈ ]−xp; 0]

qNd , x ∈ ]0;xn]

0 , x ∈ ]xn;→]

(21)

The plot of ρ(x) is shown in Figure 3a. It does not have to be scaled necessarily.
However, it is important to show: 1) whether xn > xp or vice versa; 2) whether
qNd > qNa or vice versa; 3) how forward and reverse bias affect xn and xp.
The electric field E(x) is:

E (x) =


0 , x ∈ ]←;−xp]

− qNa

ϵSi
(x+ xp) , x ∈ ]−xp; 0]

qNd

ϵSi
(x− xn) , x ∈ ]0;xn]

0 , x ∈ ]xn;→]

(22)

The plot of E(x) is shown in Figure 3b. Similarly to ρ(x), when plotting E(x)
it is important to show: 1) whether xn > xp or vice versa; 2) how forward and
reverse bias affect xn, xp and Emax.

The maximum electric field is given by: Emax = − qNd

ϵSi
xn = − qNa

ϵSi
xp.

At thermal equilibrium: Emax = −3.75 · 104 V/cm.
At VD = 0.5 V : Emax = −2.09 · 104 V/cm.
At VD = −1 V : Emax = −5.81 · 104 V/cm.

Figure 3: a) ρ(x); b) E(x).
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Exercise 05

We calculate the minority carriers diffusion lengths:

Ln =
√

Dnτn0 ≈ 16.4 [um] (23)

Lp =
√

Dpτp0 ≈ 10.5 [um] (24)

The long neutral sides conditions hold: Wp − xp >> Ln and Wn − xn >> Lp.
The excess minority carriers concentrations n′(x) and p′(x) follow an exponential
decay with x in the quasi-neutral regions, since recombination in the bulk is
dominant. We use the corresponding formula for IS :

IS = Aqn2
i

(
Dn

LnNa
+

Dp

LpNd

)
(25)

We calculate the intrinsic carrier concentration ni of Si at T2 = 250 K. We
recall that:

n2
i = NcNvexp

(
−Eg

kT

)
(26)

Since Nc ·Nv ∝ T 3, we can write the following proportionality:

Nc ·Nv(300K) : 3003 = Nc ·Nv(250K) : 2503 (27)

that gives Nc · Nv(250K) = 1.69 · 1038
[
cm−6

]
. Therefore, using formula (26)

we obtain:
n2
i (250K) ≈ 4.66 · 1015

[
cm−6

]
(28)

(ni ≈ 6.83 · 107
[
cm−3

]
). Be careful that also kT is different from the room

temperature value in the previous calculation.
Now we can calculate IS at the two temperatures.
At T1 = 300 K: IS ≈ 8.67 · 10−13 [A].
At T2 = 250 K: IS ≈ 1.79 · 10−17 [A].
We calculate the currents at VD = 0.5 V (be careful to kT in this case too):

I = IS

[
exp

(
VD

VT

)
− 1

]
(29)

At T1 = 300 K: I(0.5V ) ≈ 2.14 · 10−4 [A].
At T2 = 250 K: I(0.5V ) ≈ 2.11 · 10−7 [A].
The log|I(V )| curves at T1 and T2 are shown in Figure 4. Two main properties
change when changing the temperature: 1) the reverse saturation current IS ; 2)
the slope of the exponential, therefore the small-signal admittance gd = ∂i

∂v =
q(I+IS)

kT .

11



Figure 4: log|I(V )| curves of the PN diode at T1 = 300 K and T2 = 250 K.

Exercise 06

The small-signal equivalent circuit of the diode is:

We know that:

ϕb =
kT

q
ln

(
NaNd

n2
i

)
= 0.575 [V ] (30)

I = IS

[
exp

(
VD

VT

)
− 1

]
(31)

that leads I(0.3V ) = 2.17 · 10−8 [A] and I(−2V ) = −IS = −2.0 · 10−13 [A]. The
formulas for gd, Cj and Cd are:

gd =
q(I + IS)

kT
(32)

Cj = A · ϵSi

xd
= A ·

√
qϵSiNaNd

2 (ϕb − VD) (Na +Nd)
=

Cj0√
1− VD

ϕb

(33)
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Cd =
q

kT
τT I (34)

Therefore, we can already calculate the small-signal parameters in the two work-
ing points. Be careful to include the device section A in the formula for Cj , to
get the actual device capacitance (in [F ]) and not the capacitance density (in[
F/cm2

]
).

At VD = 0.3V : gd = 8.4 · 10−7 [S], Cj = 12.3 [pF ] and Cd = 1.7 [pF ].
At VD = −2V : gd = 0 [S], Cj = 4.0 [pF ] and Cd = 0 [F ].
To realize a variable capacitor, the small-signal admittance gd of the diode must
be negligible, so that its small-signal equivalent circuit reduces to a variable ca-
pacitance. Since gd ∝ I + IS , it must be I ≈ −IS . This condition is verified
in a DC working point in reverse bias. Therefore, we choose the working point
VD = −2V .

Exercise 07

The resistance of the emitter is calculated as:

RE = ρ
WE

AE
=

1

qµnENdE

WE

AE
(35)

where n0 = NdE >> p0 =
n2
i

NdE
in the emitter. Substituting RE = 5 [Ω], we

obtain WE = 720 [nm].
We then calculate the BJT current gain, with the formula accounting for short
base and emitter and neglecting the B-E depletion region:

βF =
IC
IB

=
NdEDnWE

NaBDpWB
= 72 (36)

For the last point we just need to calculate the minority carriers diffusion lengths
in the emitter and in the base:

LnB =
√

Dnτn0 ≈ 36.7 [um] >> WB (37)

LpE =
√

Dpτp0 ≈ 21.2 [um] >> WE (38)

The short base and emitter conditions are verified.

Exercise 08

• The oxide capacitance is the capacitance in accumulation:

Cacc = Cox = 5.0 · 10−13 =
ϵ0 · ϵr,SiO2 ·A

t

=
8.85 · 10−14 · 3.9 · 100 · 10−8

t [cm]

(39)
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t =
8.85 · 10−14 · 3.9 · 100 · 10−8

5.0 · 10−13
= 6.9 · 10−7 [cm] = 6.9 [nm] (40)

We assume that in inversion the width of the depletion region doesn’t
change with respect to threshold.
By considering that the capacitance in inversion is the series of the oxide
capacitance and the Si capacitance (method 1 ):

1

Cinv
=

1

Ctot
=

1

CSi
+

1

Cox
⇒ 1

CSi
=

1

Ctot
− 1

Cox
(41)

1

CSi
=

1

1.2 · 10−14
− 1

5.0 · 10−13
= 8.1 · 1013

[
F−1

]
(42)

CSi =
1

8.1 · 1013
= 1.2 · 10−14 =

ϵSi ·A
xd

(43)

xd =
8.85 · 10−14 · 11.7 · 100 · 10−8

1.2 · 10−14
= 8.6 · 10−5 [cm] = 0.86 [µm] (44)

By using the relationship between ϕp and xdth
(method 2 ):

ϕp = −kT

q
ln

(
Na

Ni

)
= −1.38 · 10−23 · 300

1.60 · 10−19
· ln

(
1015

1.5 · 1010

)
= −287 [mV ]

(45)

xdth
=

√
−2 · 2ϕb · ϵSi

q ·Na
=

√
2 · 0.574 · 8.85 · 10−14 · 11.7

1.60 · 10−19 · 1015

= 8.62 · 10−5 [cm]

(46)

• From the given equation and constants:

VFB = ϕms −
q ·Qss

Cox
(capacitance per unit area!!) (47)

ϕms = ϕm, Al −
(
χ′
Si +

Eg, Si

2q
− ϕp

)
= 3.2− (3.25 + 0.560 + 0.287)

= −897 [mV ]

(48)

Qss =
ϕms − VFB

q
· Cox =

−0.897 + 2.0

1.60 · 10−19
· 5.0 · 10

−13

100 · 10−8

= 3.4 · 1012
[
cm−2

] (49)

• Using the given formulas:

γ =

√
2ϵSiqNa

Cox

=
100 · 10−8

5.0 · 10−13
·
√
2 · 8.85 · 10−14 · 11.7 · 1.60 · 10−19 · 1015

= 3.6 · 10−2
[
V 1/2

] (50)
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Vth = VFB − 2ϕp + γ
√
−2ϕp = −2.0 + 0.574 + 3.6 · 10−2 ·

√
0.574

= −1.4 [V ]
(51)

• By taking the given formula and plugging the given values (because of
the subtraction in the parenthesis, no data from the previous questions is
needed for this point):

ID =
W

L
µnCox

(
VGS −

VDS

2
− Vth

)
VDS

= 1 · 1.3 · 103 · 5.0 · 10
−13

100 · 10−8
(0.10− 0.0050) · 0.010

= 6.2 · 10−7 [A]

(52)
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